
/

I

(N A S A - C R - 1 8 7 2 7 5) EXPERT SYSTEMS (Research
Inst- for Advanced Computer Science)

16 p
N9O-71380

Unclas
00/62 0295401

RlACS
Research Institute for Advanced Computer Science

Expert Systems

Peter J. Denning

November 8, 1985

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 85.17

TR-85.17 - 1 -

Expert Systems

Peter J . Denning

Research Institute for Advanced Computer Science
KASA Ames Research Center

RIACS Technical Report 85.17
Sovember 8, 1985

November 8, 1985

Computer programs that ezplicitly represent the knowledge of ezperts can be used
to solve problems normally handled by those experts. These programs are subject
to the same limitations on their capability as other software. The heuristic tech-
niques used to program them are likely to lead to systems of less reliability and
maintainability than programs developed with precise specifications.

Work reported herein was supported in part by Contract NASZ-11530 from the
National Aeronautics and Space Administration (NASA) to the

Universities Space Research Association (USRA).

This is a preprint of the column The Science of Computing for
American Scientut 74, No 1, Jsnuary-February, 1986.

TR-85.17 - 2 -

Expert Systems

Peter J. Denning
Research Institute for Advanced Computer Science

November 8. 1985

November 8 , 1985

We humans have held high opinions of ourselves throughout the ages. We

define ourselves, Homo sapiens, as the only earthly creatures capable of rational

thought. Perhaps as expressions of a racial urge to be godlike, we aspire not

only to control our environment, but to create artificial beings.

In Machines Who Think, Pamela McCorduck gives a fascinating account of

how this aspiration has shown itself down through history (1). She sees the urge

to create artificial beings expressed in ancient idols; in medieval legends of

homonculi or golems; in the calculating machines, mechanical statues, and chess

automatons of later centuries; and in the current quest for thinking machines. I

might add that the urge also expresses itself in genetic engineering.

Our creative urge is coupled with a tremendous reverence for logic. The

idea that the ability to reason logically - to be rational - is closely tied with

intelligence was clear in the writings of Plato. The search for greater under-

standing of human intelligence led to the development of mathematical logic, the

TR-85.17 - 3 - November 8, 1985

study of methods of proving the truth of statements by Iuanipuiaiiiig the qm-

bols in which they are written without regard to the meanings of those symbols.

By the nineteenth century a search was under way for a universal logic system,

one capable of proving anything provable in any other system.

This search came t o an end in the 1930s with Kurt Godel’s incompleteness

theorem and Alan Turing’s incomputability theorem. Godel showed that, given

any sufficiently powerful, consistent system of logic, one can construct a true

proposition that cannot be proved within that system. Turing described a

universal computer and showed that there are well defined problems that cannot

be solved by any computer program, even in principle. As an example, he

showed that there is no program that can determine whether any other program

will enter an endless loop when executed. A consequence of these results is that

there are always theorems beyond logic and tasks beyond machines. Some philo-

sophers argue that human intelligence is higher: there will always be human

accomplishments that defy logic or mechanical simulation.

Despite the fact that logical deductions can be carried out by machines as

pure symbol manipulations without regard to content, we continue to associate

logic with intelligence. Indeed, the fact that this intelligent activity is well

defined, reliable, and mechanizable appeals strongly to the urge to create a

thinking machine. One cannot fully appreciate modern research in machine

intelligence, its frequent psychological allusions and occasional mysticism,

without understanding the human urges to create life and to explain intelligence

TR-85.17 - 4 - November 8, 1985

with logic. Knowing this, one can peer past the aura to the reality.

The term artificial intelligence (AI) was first used in 1956 by John

McCarthy of Stanford University. It refers to the subfield of computer science

that studies how machines might behave like people. Several technologies popu-

larly associated with AI have reached the marketplace - notably image pattern

recognition, speech recognition, speech generation, and robotics. However, the

commercially successful versions of these technologies do not exploit symbolic

manipulations, and they were built by engineers who do not profess special skill

in AI. But one technology in particular has captured many fancies: expert sys-

tems.

An expert system is a computer system designed to simulate the problem-

solving behavior of a human who is expert in a narrow domain. Examples

include prescribing antibiotics, classifying chemical compounds, configuring and

pricing computer systems, scheduling experiments in real time for a telescope,

classifying patterns in images, and diagnosing equipment failures. Like books,

expert systems are a way to make the knowledge of a few available to the many.

In mathematical logic, a system consists of (finite) sets of axioms and rules

of inference. A proof is a sequence of strings of symbols, say S 1, . . . , Sp , such

that each string Si either is an axiom or is derivable from some subset of

S l , . . : , Sp - 1 by a rule of inference. An expert system is a restricted form of a

system of logic. It attempts to compute a sequence of strings representing the

steps in the solution of a problem. The sequence serves as a proof of the

TR-8 5.1 7 - 5 - November 8, 1985

solution. The d e s of inference are of a simpk form that iepieeiits a mmm

pattern in problem-solving: “if conditions then comequences.”

An expert system has three main parts: a database for storing axioms and

rules of inference; an algorithm for constructing proofs; and a user interface.

The interface, which often includes powerful interactive graphics, provides a

language for the user to express queries and to provide information to the sys-

tem. In expert-system jargon, axioms are called “facts,” rules of inference

rules,” the database the “knowledge base,” the database programmer the L &

“knowledge engineer,” the proof-constructing algorithm the “inference engine,”

proof-construction “reasoning,” and a proof of a solution an “explanation.”

A number of companies now market expert systems “shells” that come with

empty knowledge databases. Where do the data come from? A database is built

by a trial-and-error process called knowledge engineering. Through extensive

interviews with the expert, the knowledge engineer attempts to elicit verbaliza-

tions of rules and of highly detailed facts, and to program this information into

the database. The process includes continual testing of the system and expan-

sion of its database to cover cases previously left out.

Although prototypes of systems based on a few hundred rules can often be

brought into operation within two months, it is not unusual for the process of

building and testing an expert system to require many months and to produce

several thousand rules. The set of rules may be incomplete and inconsistent; the

exact behavior of the system may have no precise specification and may not be

TR-85.17 - 6 - November 8, 1985

reliably predictable by its designer. For this reason, the technique of program-

ming an expert system is sometimes called heuristic programming.

This class of systems using heuristic programming and rule evaluation does

not contain all systems that simulate human expertise. John Shore points out

that autopilots - control systems that solve the equations of motion of the air-

craft - fly planes very well. They are expert fliers, but not expert systems (2).

AI researchers often distinguish between shallow and deep expert systems.

Shallow systems are designed for speed. In their limited databases they store

more facts than rules. The proofs of their conclusions are usually short, and

most of the conclusions strike observers as being straightforward consequences of

information in their databases. They often give poor results when applied to

problems other than those for which they have been tested. Examples include a

system to generate production schedules using bin-packing heuristics and a sys-

tem to answer electronic inquiries for technical information.

Deep systems derive their conclusions from models of phenomena in their

domains, using first principles embedded in the model. The proofs of their con-

clusions are usually long, and some conclusions may strike some observers as

anything but obvious. An example is Dendral, a system that, when given spec-

tral data, generates diagrams of chemical compounds using ball-and-stick atomic

models. Other prominent examples include qualitative physics programs, which

determine states of behavior of physical systems (3). These programs can

proceed backwards from observations and generate hypotheses about initial

TR-85. i 7 - 7 - November 8,1985

conditions; they can proceed forward fmiii kit id e ~ i d i t i ~ n s and exp!eh

discrepancies between predicted and observed final states by generating

hypotheses about which components may be broken.

The distinction between shallow and deep systems is not sharp. It may not

even be important. A system that derives conclusions from first principles may

generate long proofs, but how long is a deep proof? Every expert system is capa-

ble of generating conclusions that are not obvious to some observers, but what

fraction of observers will be surprised by a deep system? A model is a small set

of rules that explains a large amount of data, but how much compaction of data

into rules is deep?

A system need not be deep to be useful. One of the best-known expert sys-

tem is Mycin, whose rules associate diseases with symptoms. By answering ques-

tions about symptoms, Mycin leads the user to a diagnosis and recommended

antibiotic treatment. The processes by which Mycin reaches its conclusions

resemble those used by a doctor in interviewing a patient and analyzing lab

data. Mycin is not a deep system, because its knowledge is empirical and is not

derived internally from models of diseases, symptoms, or cures.

Every expert system, deep or shallow, is likely to use one of three ways of

representing knowledge. The three resulting types of system are nicely described

in three articles edited by Peter Friedland of Stanford University (4). I will sum-

marize these systems briefly here.

TR-65.17 - 8 - November 8, 1985

The first type is the logic programming system. It embodies explicitly the

model of proof in mathematical logic. In the language PROLOG, for example,

rules are represented in the form “ q :- p 1, . . . , pn ,” interpreted as: “If the

predicates p 1, . . . , pn are all true, then the predicate q follows.” A predicate is

a formula that is true for some values of its variables; for example,

PARENT(z ,y) is true exactly when person z is the parent of person y . A fact

is represented by an empty right side; for example, if Alice is the parent of Bob,

we write “PARENT(Alice, Bob) :- .” The principle of transitivity allows us to

replace a pair of rules,

with the new rule

This pattern of reduction is the basis of the PROLOG inference algorithm,

called resolution, for finding the ultimate consequences of given conditions. The

resolution principle is actually much more powerful than described above. It is

not necessary that the Q on the left of the first rule be the same as the Q on

the right of the second rule; it is only necessary that they can be made the same

by substituting for some of the variables. For example, an allowable PROLOG

resolution takes

TR-85.17 - 9 - November 8,1985

PARENT(r ,&h! :- MOTHER!z ,Bob)

GRANDPARENT(Alice,r) :- PARENT(Alice,y), PARENT(y ,I)

into

GRANDPARENT(Alice,z) :- MOTHER(Alice,Bob), PARENT(Bob,z)

after assigning z =Alice and y =Bob. The process of forcing two predicates to be

the same by finding matches among components is called unification. With each

resolution, PROLOG keeps track of the possible values that make the predicates

true. Not only can it answer queries with a “yes” or “no,” it can report which

values variables must have for “yes” to be the answer.

The second type is the rule-based system. Its database is structured as a

hierarchy of rule sets. Each rule set comprises a series of condition-consequence

rules as defined earlier. Two strategies are common for evaluating the conse-

quences of the initial conditions given by the user. Under forward chaining,

evaluation proceeds by tracing rules from left side to right, until the ultimate

consequences of the given conditions have been found. Under backward chain-

ing, evaluation proceeds by tracing rules from right side to left, until the ulti-

mate antecedents of a hypothesis about the given conditions have been found;

hypotheses that conflict with the given conditions are discarded along the way.

Which method is faster depends on the problem. If many data are available, it

is often faster to chain backwards from a few likely hypotheses. If there are

many possible hypotheses (for example, in medical diagnosis), it is usually better

TR-85.17 - 10- November 8, 1985

to chain forward from the limited initial data. The search for applicable rules

can be restricted by allowing consequents of rules to name rule-sets in which

further applicable rules can be found.

The third type is the frame-based system. A frame based system is centered

on a hierarchy of descriptions of objects referred to in the rules. The description

of a class of objects or an individual object is called a frame. The relation “is an

instance of ’ organizes the hierarchy of frames. Thus in a computer failure diag-

nosis system, a frame called “Microprocessor No. 3” might be immediately

subordinate to a frame called “Microcomputers,” which in turn might be subor-

dinate to a frame called “Computers.” Rules are used to describe functional rela-

tionships among frames. Any property of an object that can be derived by locat-

ing it in the hierarchy of frames need not be explicitly represented in the rule

sets. This gains relative simplicity of rule sets in exchange for complexity of the

catalogs of frames and of the inference algorithm (which must do more computa-

t ion) .

What are the limitations of expert systems? The most important concern

their reliability. Expert systems are limited by the information in their data-

bases and by the nature of the process for putting that information in. They

cannot report conclusions that are not already implicit in their databases. The

trial-and-error process by which knowledge is elicited, programmed, and tested is

likely to produce inconsistent and incomplete databases; hence, an expert system

may exhibit important gaps in knowledge at unexpected times. Moreover, expert

TR-85.17 - 11 - November 8, 1985

.

systems are uniiiely io have compiete, dear functional Specifications, and their

designers may be unable to predict reliably their behavior in situations not

tested. If not carefully structured as modules, large databases are likely to be

difficult to modify and maintain.

This aspect of expert systems has been sharply criticized. David Parnas

argues that software developed heuristically is inherently less reliable than

software developed from precise specifications (5). He asserts that to get a reli-

able program to solve a problem one must study the problem, not the way peo-

ple say they solve it. For example, to distinguish among objects in a picture, one

studies the characteristics of the objects and of the photographic process; if one

asks people for the rules, one is unlikely to find a reliable program. The expert

may not be consciously aware why his methods work. and the knowledge

engineer who interviews him is like an investigative reporter who may not always

ask the right questions.

John Shore reminds us that testing is an inherently unreliable way to find

errors in programs (2). Because it can only reveal the presence of bugs, never

their absence, testing is inadequate for most software. The situation is worse for

expert systems, where the correct behavior in a particular case is often a matter

of opinion. In Shore’s view, programming by trial and error will produce expert

systems that are unreliable and cannot be trusted as autonomous systems. He

does believe that expert systems can be useful, with human supervision, as

“intelligent assistants. ”

TR-85.17 - 12 - November 8, 1985

Some AI researchers respond that complete testing is meaningless for expert

systems. The best these systems can do is imitate human experts, who are them-

selves imperfect. Even as one does not expect a doctor to diagnose correctly

every illness, one cannot expect an expert system to do better. They respond

further that mathematical proof is meaningless for large programs because one

cannot tell whether the specifications are complete or accurate. While I find

much to agree with in these statements, I do not support their implied conclu-

sion. I believe that we can and often do build machines that overcome human

limitations. I believe further that in producing machines on whose decisions lives

may depend we should use every available method of establishing that the

machines will perform their functions reliably. While imperfect, precise specifica-

tions are more likely to produce a reliable machine than are trial and error.

Insistence by their developers that expert systems cannot be made more reli-

able than humans will be met by public insistence that software pass tests simi-

lar to those for certifying human experts. This may significantly extend the time

required to bring an expert system to market. Other tests may be imposed too.

For example, the Food and Drug Administration is considering a requirement

that medical diagnosis systems be subjected to stringent field tests like other

medical apparatus before being allowed on the general market.

Although expert systems developed by trial and error are likely to be unreli-

able, there is no reason in principle that, with a different programming metho-

dology, expert systems cannot be as reliable as other software. Expert systems

.

c

TR-85.17

are: after all, nothin

- 13 -

more than computer programs. Th

November 8, 1985

powerful languages of

logic, rules, and frames permit deductive processes to be programmed quite

rapidly. Like other software, there is every reason to believe that rules can be

constructed as sets of modules, that modules can be organized into hierarchies,

that calculi for precise specScations can be developed, and that methods for

proving that rules meet specifications can be devised.

The notion of precise specifications for human processes has its quixotic

side, for how does one specify precisely what an expert does? And yet there are

grounds for hope. The most successful expert systems to date are the ones used

for diagnosis. They are based on a well-understood model of diagnostic

processes. The rules can be organized into a hierarchy of modules corresponding

to decision points in the diagnostic process; their completeness and consistency

can be evaluated with respect to the model. The hope is that models of other

hvman problem-solving processes can be defined and used similarly for their

expert systems.

There is nothing magic about expert systems. Turing’s thesis tells us that

any mechanical procedure can be programmed on a computer. If we know of a

procedure to find a procedure, we can program that. But if we know nothing at

all, we are stuck. We cannot expect an expert system to help if we do not know

how something is done. Alan Perlis of Yale has said: “Good work in AI concerns

the automation of things we know how to do, not the automation of things we

would like to know how to do.” AI cannot replace RI.

TR-85.17 - 14 -

References:

1. P. McCorduck. 1979. Machines Who Think. Freeman.

2. J. E. Shore. 1985. The Sachertorte Algorithm. Viking.

November 8, 1985

3. D. Bobrow, ed. 1985. Qualitative Reasoning About Physical Systems. MIT
Press. .
4. P. Friedland, ed. 1985. Knowledge-based architectures. Communicationcr of
A CM, September.

5 . D. L. Parnas. 1985. “Software Aspects of Strategic Defense Systems.”
A merican Scientist 79, 5 , Sept ember-Oc tober.

